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Note 

Computer Algorithms and Programs for Permanent Multipole and 
Induced Dipole Interaction Energies and Dipole Vectors in Crystals* 

1. INTRODUCTION 

The purpose of this note is to report tested procedures and programs in CDC 
FORTRAN for calculating permanent multipole lattice energies with an option for 
induced dipole energies and vectors for perfect crystals. The programs can be supplied 
upon request. In addition, modifications, which have been shown useful for similar 
calculations on orientationally disordered crystals, are described. The programs 
have been extensively tested in calculations of the lattice energy of three forms of ice 
as well as other quantities of current interest [I], such as the total molecular dipole 
vector and, therefore, could be used to calculate the Kirkwood g-factor. According 
to dimensions now assigned, the programs are limited to the interactions of all 
multipoles of orders <N where N ,( 14. A separate program can supplement the 
electrostatic part of the energy with inverse power terms, rrmn, which are not restricted 
to lattice sites. In the present version, m must be a positive integer ,(12. It can be 
trivially extended for nonintegral exponents. Although the partial sums for m < 3 
diverge, they have already proved their usefulness in check calculations on finite 
lattices as in Section 4. 

The region of useful convergence of finite multipole approximations to the first- 
order Coulomb energy for molecular charge distributions is, of course, dependent 
upon the system. Pack et al. [2] have proven their utility for some approximate wave- 
functions for larger molecules even at distances corresponding to condensed phases. 
Campbell and Mezei [3, 41 have established the useful convergence of three-center 
expansions for water for such distances and van Hemert and Mulder [5] are making 
comparisons with direct integral evaluation. Kin-Chue, et al. [6, 71 have compared 
results from integral evaluations with those from multipole expansions for four dif- 
ferent simple molecules as types to aid in predicting when the approximations will 
and will not be useful. 

2. THE PERMANENT MULTIPOLE CALCULATIONS 

The calculation is based upon the multipole representation in the Maxwell Invariant 
Form in which an Nth-order multipole is characterized by N unit vectors, called 
characteristic directions and a scalar multipole moment, 

s1 ,...) s, ) p. (1) 
* We express our appreciation to the National Institute of Health which has supported this work 

under Grant IROl GM20436-02. 
297 

0021-9991/78/02924297f02.00/0 
Copyright 0 1978 by Academic Press. Inc. 

All rights of reproduction in any form reserved. 



298 MEZEI AND CAMPBELL 

An algorithm for the determination of the si and p cn) has been published and pro- 
grams are available on request [3, 8l.l The programs reported here use an extension 
of the Ewald-Kornfeld method for lattices of dipoles and zonal quadrupoles to 
permanent multipoles of arbitrary order [9] and a subsequent extension of the formal- 
ism for permanent multipole lattices to induced dipoles [lo]. The procedure has been 
generalized to induced multipoles of arbitrary order [ll]. In this procedure, the sites 
of the crystal lattice are written as the union, 

ujTj , Tj = the set of sites of the jth simple translation lattice. (2) 

The permanent multipole energy, UP , is given as a sum of contributions from each 
center in the unit cell, X, , and each Tj : 

Un(X, , T,): the interaction energy of a central site, X C , with all sites belonging to the 
simple translation lattice, Tj . W 

Each U,(X, , Tj) is obtained from a truncation of the multipole sum over the multipole 
tensors of order N(X,) at X, and N(T,) at the sites belonging to Ti . The programs 
make use of a technique developed for use when calculations are repeated for a 
large number of sets of different orientations at the lattice sites [9], which has 
recently been shown to be more efficient even for a single set when multipole 
interactions of order N(X,) + N(T,) > -5 are included [12]. In this procedure, 
U,G’L , Tj > WW, W,))) is written as a sum of products of K-functions, which 
depend only on the crystal geometry, by (T functions, which are determined by the 
charge densities: 

WXc , G , W(Xc), NT,))) 
p(N(X,))p(N(T,)) 

c K(v, XC - Xi , OYW, NV'&) 48W, YP(Tj), v); = N(X,)! N(T,)! (,,) (44 

v = <VI, VZ,VS); v1 i- v2 + v3 = N(X,) + N(TJ; each 

vi is a positive integer or zero; (4b) 

Xj : an arbitrary site belonging to Tj ; 

Y(X,)[Y(TJ]: the set of the N(X,)[N(T,)] characteristic directions; 

w 

(44 

‘One stage of the current programs assumes one electron orbitals constructed from a linear 
combination of Gaussians. Only this stage must be modified for other forms. 
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PM): the scalar multipole moment of order M; (44 
K(v, Xc - Xj, W&), NV,))) (cf. [9, W. (41, (241, (25), (2% (371, (39)> (40)1);2 (40 

4nxL4, ar,), 4 (cf. [9, Eqs. (22), (WI). (4g) 
The specific equations and the method used to construct the K’s have been published 

[9a]. The U’S are constructed by a new efficient recursion analogous to that of [12, 
Eq. (9)] to reduce the increase of operations with the order N from 0(3N) for direct 
evaluation to O(N3). 

The extended Ewald-Kornfeld technique has the advantage of a simple check on 
the calculation of the lattice sums giving the K’s. Each K is given as a sum of two 
series, one over the lattice and the other over the reciprocal lattice. Although each of 
the two series is a function of an arbitrary parameter, E, their sum is not. Comparison 
of calculations using two different values of E has been found useful for the detection of 
programmatic and other errors [9b] and has been used as a basis for an estimate of 
the error introduced by the truncation of the lattice sums. 

The input consists essentially of the following: (i) indices determining the type and 
orientation of the charge distribution at each site, X; (ii) the components of the sites 
X, and X(Tj) and of the unit cell basis vectors relative to a common orthogonal 
Cartesian frame for the crystal; (iii) the components of the characteristic directions 
relative to an intrinsic orthogonal Cartesian frame assigned to each type; (iv) the 
elements of rotation matrices defining the transformation from the intrinsic frame for 
each distribution to the common crystal frame. The number of redundant calculations 
can be reduced in three different ways: (i) the program automatically uses some 
aspects of the general symmetry of multipole sums; (ii) additional optional input can 
further use this general symmetry, (iii). Further identities for other (X, , Ti) and 
<Xb, Tj) determined by the symmetry of the particular cyrstal can be specified. Our 
work on the rotationally disordered ice Ih suggests a way of locating such identities as 
a possible alternative to a symmetry analysis for the different (X, , Tj) pairs. If for 
all orders 

WXc) t NT,) < N,, , (54 

u&h 7 Tj > <N(&), N(T,))) = UP(X y Tj’, (N(X), N(TJ)), (5b) 

and if N, is sufficiently high, then our work suggests the assumption that the equality 
hplds for higher orders as well. In the case of ice Ih, N, = 5 was the minimum value 
such that the identities of Eq. (5b) implied equalities which were verified for all 
orders N(X,) + N(T,) < 14. 

The basic program can be extended to the case of rotationally disordered crystals 
in the following crystal analog of calculations on translationally and rotationally 
disordered fluids. (i) The rotationally disordered lattice is replaced by a rotationally 
ordered lattice with a larger unit cell. Define an allowed configuration as any set of 
orientations consistent with constraints on allowed mutual orientations at nearest- 
neighbor lattice sites and with the assumed unit cell. Generate all allowed configura- 

* A clearly recognizable error in Eq. (40) is corrected in the documentation and will be submitted 
as an erratum to the original Journal. 
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tions. For example, Campbell et al. [13] have shown that for ice Ih it sufficed to 
replace the unit cell for 0 sites, which contains four water molecules, with a unit cell 
containing 16 molecules and have described a routine for configuration generation 
(cf. [13, Appendix A]). (ii) R pl e ace the costly calculations of the energy for each 
configuration by the generation of lattice sums for each (X, , Ti) pair, after identities 
have been eliminated as described above. The sum over (X, , Tj) for any allowed 
configuration is then computed simply as a sum of entries in the tabulated array. 

3. THE INDUCED MOMENT OPTION 

The present program is limited to the approximation in which the components of 
the induced dipole vector at any site X, are given by 

zyxJ = ci”~Ej(x& 
&j: the (i, j) component of the ordinary dipole polarizability tensor; 

E&K,,): thejth component of the electric field 

(6a) 
(6b) 

defined at X,, by the induced dipoles and permanent multipoles 
of all orders located at other sites. 

(6~) 

Thus it neglects the contributions to Zi(X,) arising from higher powers in the Z$(X,,) as 
well ‘as from the first and higher powers of the derivatives in the field components, 
which are included in a general procedure which has been developed [l 11. Campbell 
[IO] has shown that in the approximation of Eq. (6) the Z*(X,) for all Nceu sites, Xc , 
in the unit cell are obtained as the solution of a set of at most 3 Nceu simultaneous 
linear equations. The present program solves for all components in a single crystal- 
based reference frame rather than in different intrinsic reference frames for each X, . 
In contrast to implications of the earlier article, in the approximation of Eq. (6) the 
general frame turns out to be more convenient. The additional contribution to the 
lattice energy arising from the interaction of each Zi(X,J with the permanent multipoles 
of other sites is then computed by a generalization of the procedure of Mandel and 
Mazur [14] for a finite set of polarizable dipoles. 

4. TESTS OF PROGRAMS 

The programs have been subjected to the following tests. (i) When the fifth-order 
contribution to the interaction energy was computed by the present program and by a 
lattice sum using the untransformed multipole equations of Campbell [9, Eqs. (l), (2)] 
the results agreed within the estimated error from the truncation of the lattice sum, 
0.021 %. (ii) The results for the U, were compared with Gelernter’s [15] calculations 
based on somewhat different algorithms. They agreed for orders II < 4. Discrepancies 
for some orientations, which appeared at 12 = 5, were interpreted in terms of special 
coding for n = 5 in the earlier work, in contrast with the cyclic coding of the present 
program. This interpretation was supported by the fact that the difference between 
Gelernter’s value and the value given by the untransformed lattice sum was 1 l-fold 
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larger than the difference in test (i). (iii) The induced moment option has been subjected 
to a consistency test. A program written for equations which use components for each 
induced dipole vector relative to an intrinsic molecular coordinate system at the 
lattice site gave the same lattice energy as the present program written for equations 
which use components for each induced dipole vector relative to a single crystal 
based coordinate system for all sites. (iv) The program for inverse power potentials 
has been checked in two ways. (a) The lattice sums for face centered lattices agreed 
with the 6 and 7 digit values quoted by Hirschfelder et al. [16]. (b) A multipole 
expansion for the interaction energy defined by two finite lattices of unit positive 
charges contained within nonoverlapping spheres was constructed. The distance 
between the expansion centers was chosen to be sufficiently great to give reasonably 
rapid convergence. This value agreed with the potential calculated by a simple 
Coulomb sum using the inverse power program to within the estimated convergence 
error of the multipole expansion: exactly through five decimal digits. 
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